If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-285=0
a = 2; b = 2; c = -285;
Δ = b2-4ac
Δ = 22-4·2·(-285)
Δ = 2284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2284}=\sqrt{4*571}=\sqrt{4}*\sqrt{571}=2\sqrt{571}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{571}}{2*2}=\frac{-2-2\sqrt{571}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{571}}{2*2}=\frac{-2+2\sqrt{571}}{4} $
| 0.80x+60=120 | | a/4-1=a/3+6 | | 2(x-1)^2+7=39 | | 6+9v=2(v–11) | | 13-x+5=2 | | 53x+64=52x-97 | | 4(x+2)=12x-28 | | n/3-1/2=7/6 | | 2/3x+3=2/5x-1 | | 2y’+3y=0 | | 7(3-2x)=-35 | | (5x-3)/(2)=3x+8 | | 2−b3=−52 | | 19x+38=180 | | -0.9x+8.76=-0.5×+1.96 | | -2(3x+8)=-3(4x+5) | | -6(2x+3)=-(5x-10) | | (6.1)+t=5.4 | | 7b-20=3b+20 | | (X^2)(2^x)-64(2^x)=0 | | 4x-3/2=-4 | | 4^1-2x=3^2x-5 | | (-3.48)+e=6.21 | | 4x-30=10x | | X^x=64 | | 5(x+2)^2=180 | | -20=4u-8 | | 2.7x-66=1.1x+6 | | 9(x+4)=1-2x | | 5y-17y=6 | | 3-3r=-3 | | -24x=-24x+-111 |